Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
PLoS Pathog ; 20(3): e1012130, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38551978

ABSTRACT

Classical Swine Fever (CSF), caused by the Classical Swine Fever Virus (CSFV), inflicts significant economic losses on the global pig industry. A key factor in the challenge of eradicating this virus is its ability to evade the host's innate immune response, leading to persistent infections. In our study, we elucidate the molecular mechanism through which CSFV exploits m6A modifications to circumvent host immune surveillance, thus facilitating its proliferation. We initially discovered that m6A modifications were elevated both in vivo and in vitro upon CSFV infection, particularly noting an increase in the expression of the methyltransferase METTL14. CSFV non-structural protein 5B was found to hijack HRD1, the E3 ubiquitin ligase for METTL14, preventing METTL14 degradation. MeRIP-seq analysis further revealed that METTL14 specifically targeted and methylated TLRs, notably TLR4. METTL14-mediated regulation of TLR4 degradation, facilitated by YTHDF2, led to the accelerated mRNA decay of TLR4. Consequently, TLR4-mediated NF-κB signaling, a crucial component of the innate immune response, is suppressed by CSFV. Collectively, these data effectively highlight the viral evasion tactics, shedding light on potential antiviral strategies targeting METTL14 to curb CSFV infection.


Subject(s)
Adenine , Classical Swine Fever Virus , Classical Swine Fever , Animals , Classical Swine Fever Virus/genetics , Immunity, Innate , Swine , Toll-Like Receptor 4
2.
Viruses ; 16(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38543818

ABSTRACT

Porcine rotavirus A (PoRVA) is an enteric pathogen capable of causing severe diarrhea in suckling piglets. Investigating the prevalence and molecular characteristics of PoRVA in the world, including China, is of significance for disease prevention. In 2022, a total of 25,768 samples were collected from 230 farms across China, undergoing porcine RVA positivity testing. The results showed that 86.52% of the pig farms tested positive for porcine RVA, with an overall positive rate of 51.15%. Through the genetic evolution analysis of VP7, VP4 and VP6 genes, it was revealed that G9 is the predominant genotype within the VP7 segment, constituting 56.55%. VP4 genotypes were identified as P[13] (42.22%), P[23] (25.56%) and P[7] (22.22%). VP6 exhibited only two genotypes, namely I5 (88.81%) and I1 (11.19%). The prevailing genotype combination for RVA was determined as G9P[23]I5. Additionally, some RVA strains demonstrated significant homology between VP7, VP4 and VP6 genes and human RV strains, indicating the potential for human RV infection in pigs. Based on complete genome sequencing analysis, a special PoRVA strain, CHN/SD/LYXH2/2022/G4P[6]I1, had high homology with human RV strains, revealing genetic reassortment between human and porcine RV strains in vivo. Our data indicate the high prevalence, major genotypes, and cross-species transmission of porcine RVA in China. Therefore, the continuous monitoring of porcine RVA prevalence is essential, providing valuable insights for virus prevention and control, and supporting the development of candidate vaccines against porcine RVA.


Subject(s)
Rotavirus Infections , Rotavirus , Humans , Animals , Swine , Rotavirus/genetics , Phylogeny , Rotavirus Infections/epidemiology , Rotavirus Infections/veterinary , Rotavirus Infections/genetics , Genome, Viral , Genotype
3.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38519099

ABSTRACT

The intricate evolutionary dynamics of endosymbiotic relationships result in unique characteristics among the genomes of symbionts, which profoundly influence host insect phenotypes. Here, we investigated an endosymbiotic system in Phenacoccus solenopsis, a notorious pest of the subfamily Phenacoccinae. The endosymbiont, "Candidatus Tremblaya phenacola" (T. phenacola PSOL), persisted throughout the complete life cycle of female hosts and was more active during oviposition, whereas there was a significant decline in abundance after pupation in males. Genome sequencing yielded an endosymbiont genome of 221.1 kb in size, comprising seven contigs and originating from a chimeric arrangement between betaproteobacteria and gammaproteobacteria. A comprehensive analysis of amino acid metabolic pathways demonstrated complementarity between the host and endosymbiont metabolism. Elimination of T. phenacola PSOL through antibiotic treatment significantly decreased P. solenopsis fecundity. Weighted gene coexpression network analysis demonstrated a correlation between genes associated with essential amino acid synthesis and those associated with host meiosis and oocyte maturation. Moreover, altering endosymbiont abundance activated the host mechanistic target of rapamycin pathway, suggesting that changes in the amino acid abundance affected the host reproductive capabilities via this signal pathway. Taken together, these findings demonstrate a mechanism by which the endosymbiont T. phenacola PSOL contributed to high fecundity in P. solenopsis and provide new insights into nutritional compensation and coevolution of the endosymbiotic system.


Subject(s)
Betaproteobacteria , Gammaproteobacteria , Hemiptera , Animals , Male , Female , Sirolimus/metabolism , Betaproteobacteria/genetics , Gammaproteobacteria/genetics , Hemiptera/microbiology , Reproduction , Amino Acids/metabolism , Symbiosis
4.
Environ Int ; 185: 108515, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38394914

ABSTRACT

Hexavalent chromium [Cr (VI)] is an important environmental pollutant and may cause lung injury when inhaled into the human body. Cr (VI) is genotoxic and can cause DNA damage, although the underlying epigenetic mechanisms remain unclear. To simulate the real-life workplace exposure to Cr (VI), we used a novel exposure dose calculation method. We evaluated the effect of Cr (VI) on DNA damage in human bronchial epithelial cells (16HBE and BEAS-2B) by calculating the equivalent real-time exposure dose of Cr (VI) (0 to 10 µM) in an environmental population. Comet experiments and olive tail moment measurements revealed increased DNA damage in cells exposed to Cr (VI). Cr (VI) treatment increased nuclear γ-H2AX foci and γ-H2AX protein expression, and caused DNA damage in the lung tissues of mice. An effective Cr (VI) dose (6 µM) was determined and used for cell treatment. Cr (VI) exposure upregulated circ_0008657, and knockdown of circ_0008657 decreased Cr (VI)-induced DNA damage, whereas circ_0008657 overexpression had the opposite effect. Mechanistically, we found that circ_0008657 binds to microRNA (miR)-203a-3p and subsequently regulates ATM serine/threonine kinase (ATM), a key protein involved in homologous recombination repair downstream of miR-203a-3p, thereby regulating DNA damage induced by Cr (VI). The present findings suggest that circ_0008657 competitively binds to miR-203a-3p to activate the ATM pathway and regulate the DNA damage response after environmental chemical exposure in vivo and in vitro.


Subject(s)
Chromium , MicroRNAs , Humans , Animals , Mice , Chromium/toxicity , DNA Damage , Lung , MicroRNAs/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism
5.
Environ Toxicol ; 39(1): 377-387, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37782690

ABSTRACT

Fine particulate matter (PM2.5 ) has been shown to induce lung injury. However, the pathophysiological mechanisms of PM2.5 -induced pulmonary injury after different exposure times are poorly understood. In this study, we exposed male ICR mice to a whole-body PM2.5 inhalation system at daily mean concentration range from 92.00 to 862.00 µg/m3 for 30, 60, and 90 days. We found that following prolonged exposure to PM2.5 , pulmonary injury was increasingly evident with significant histopathological alterations. Notably, the pulmonary inflammatory response and fibrosis caused by PM2.5 after different exposure times were closely associated with histopathological changes. In addition, PM2.5 exposure caused oxidative stress, DNA damage and impairment of DNA repair in a time-dependent manner in the lung. Importantly, exposure to PM2.5 eventually caused apoptosis in the lung through upregulation of cleaved-caspase-3 and downregulation of Bcl-2. Overall, our data demonstrated that PM2.5 led to pulmonary injury in a time-dependent manner via upregulation of proinflammatory and fibrosis-related genes, and activation of the DNA damage response. Our findings provided a novel perspective on the pathophysiology of respiratory diseases caused by airborne pollution.


Subject(s)
Lung Injury , Mice , Male , Animals , Lung Injury/chemically induced , Lung Injury/pathology , Mice, Inbred ICR , Particulate Matter/toxicity , Lung/pathology , Oxidative Stress/genetics , Fibrosis
6.
Int Urol Nephrol ; 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38085410

ABSTRACT

PURPOSE: Multiple factors, such as dietary patterns, pharmaceutical interventions, and exposure to harmful substances, possess the capacity to influence gut microbiota composition. Gut microbiota dysbiosis has emerged as a significant contributor to the progression of chronic kidney disease (CKD) and its associated complications. By comprehending the intricacies of the intestinal microbiota, this research endeavor holds the potential to offer novel perspectives on potential strategies for mitigating CKD progression. METHODS: In this retrospective analysis, we assessed gut microbiota composition in CKD patients. Fecal samples were collected from a cohort of 44 patients with stage 3-4 CKD, alongside a control group consisting of 132 healthy volunteers. Subsequently, 16 s rDNA sequencing was conducted to examine the composition of the gut microbiota. RESULTS: Our findings revealed significant alterations in the diversity of intestinal microbiota in fecal samples between patients with stage 3-4 CKD and healthy subjects. Among the 475 bacterial genera, 164 were shared, while 242 dominant genera were exclusive to healthy subjects and 69 to CKD stages 3-4 samples. Notably, healthy volunteers exhibited a prevalence of intestinal Firmicutes and Bacteroidetes, whereas stage 3-4 CKD patients displayed higher abundance of Proteobacteria and Actinobacteria. The presence of uncultured Coprobacillus sp. notably contributed to distinguishing between the two groups. ROC curve analysis identified distinct microbiota with superior diagnostic efficacy for discriminating stage 3-4 CKD patients from healthy individuals. Metabolic pathway analysis revealed differing dominant pathways between the two groups-the NADH dehydrogenase pathway in healthy individuals and the phosphate acetyltransferase pathway in stage 3-4 CKD patients. Moreover, the CKD cohort displayed a higher proportion of Gram-negative bacteria and facultative anaerobes. CONCLUSIONS: In conclusion, our study underscores the profound influence of gut microbiota dysbiosis on CKD progression. The distinct microbial profiles observed in CKD patients highlight the potential efficacy of microbiota-based interventions in mitigating CKD advancement.

7.
BMC Anesthesiol ; 23(1): 301, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37670237

ABSTRACT

BACKGROUND: Double lumen tube (DLT) and single lumen tube (SLT) are two common endotracheal tube (ETT) types in esophageal cancer surgery. Evidence of the relationship between two ETT types and postoperative pneumonia (PP) remains unclear. We aimed to determine the association between two types of ETT (DLT and SLT) and PP and assess the perioperative risk-related parameters that affect PP. METHODS: This study included 680 patients who underwent esophageal cancer surgery from January 01, 2010 through December 31, 2020. The primary outcome was PP, and the secondary outcome was perioperative risk-related parameters that affect PP. The independent variable was the type of ETT: DLT or SLT. The dependent variable was PP. To determine the relationship between variables and PP, univariate and multivariate analyses were performed. The covariables included baseline demographic characteristics, comorbidity disease, neoadjuvant chemotherapy, tumor location, laboratory parameters, intraoperative related variables. RESULTS: In all patients, the incidence of postoperative pneumonia in esophagectomy was 32.77% (36.90% in DLT group and 26.38% in SLT group). After adjusting for potential risk factors, we found that using an SLT in esophagectomy was associated with lower risk of postoperative pneumonia compared to using a DLT (Odd ratio = 0.41, 95% confidence interval (CI): 0.22, 0.77, p = 0.0057). Besides DLT, smoking history, combined intravenous and inhalation anesthesia (CIIA) and vasoactive drug use were all significant and independent risk factors for postoperative pneumonia in esophagectomy. These results remained stable and reliable after subgroup analysis. CONCLUSIONS: During esophagectomy, there is significant association between the type of ETT (DLT or SLT) and PP. Patients who were intubated with a single lumen tube may have a lower rate of postoperative pneumonia than those who were intubated with a double lumen tube. This finding requires verification in follow-up studies.


Subject(s)
Esophageal Neoplasms , Pneumonia , Humans , Esophagectomy , Retrospective Studies , China
8.
Environ Pollut ; 335: 122299, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37541382

ABSTRACT

Although short-term fine particulate matter (PM2.5) exposure is associated with systemic inflammation, the effect of lncRNA on these association remains unknown. This study aims to investigate whether the plasma lncRNA mediate the effect of short-term PM2.5 exposure on systemic inflammation. In this cross-sectional study, plasma Clara cell protein 16 (CC16), interleukin 6 (IL-6), IL-8, tumor necrosis factor-α (TNF-α) and lncRNA expression levels were measured in 161 adults between March and April in 2018 in Shijiazhuang, China. PM2.5 concentrations were estimated 0-3 days prior to the examination date and the moving averages were calculated. Multiple linear regressions were used to evaluate the associations between PM2.5, the four biomarkers and lncRNA expression levels. Mediation analyses were performed to explore the potential roles of lncRNA expression in these associations. The median concentration of PM2.5 ranged from 39.65 to 60.91 mg/m3 across different lag days. The most significant effects on IL-6 and TNF-α per interquartile range increase in PM2.5 were observed at lag 0-3 days, with increases of 0.70 pg/mL (95% CI: 0.33, 1.07) and 0.21 pg/mL (95% CI: 0.06, 0.36), respectively. While the associations between PM2.5 and IL-8 (0.68 pg/mL, 95% CI: 0.34, 1.02) and CC16 (3.86 ng/mL, 95% CI: 1.60, 6.13) were stronger at lag 0 day. Interestingly, a negative association between PM2.5 and the expression of four novel lncRNAs (lnc-ACAD11-1:1, lnc-PRICKLE1-4:1, lnc-GPR39-7:2, and lnc-MTRNR2L12-3:6) were observed at each lag days. Furthermore, these lncRNAs mediated the effects of PM2.5 on the four biomarkers, with proportions of mediation ranged from 2.27% (95% CI: 1.19%, 9.82%) for CC16 to 35.60% (95% CI: 17.16%, 175.45%) for IL-6. Our findings suggested that plasma lncRNA expression mediat the acute effects of PM2.5 exposure on systematic inflammation. These highlight a need to consider circulating lncRNA expression as biomarkers to reduce health risks associated with PM2.5.


Subject(s)
Air Pollutants , Air Pollution , RNA, Long Noncoding , Adult , Humans , Air Pollutants/toxicity , Air Pollutants/analysis , RNA, Long Noncoding/genetics , Cross-Sectional Studies , Interleukin-6 , Interleukin-8 , Tumor Necrosis Factor-alpha , Environmental Exposure/analysis , Particulate Matter/toxicity , Particulate Matter/analysis , Biomarkers/analysis , Inflammation/chemically induced , Air Pollution/analysis , Receptors, G-Protein-Coupled
9.
Adv Sci (Weinh) ; 10(14): e2206896, 2023 05.
Article in English | MEDLINE | ID: mdl-36814305

ABSTRACT

Changes in gene expression in lung epithelial cells are detected in cancer tissues during exposure to pollutants, highlighting the importance of gene-environmental interactions in disease. Here, a Cd-induced malignant transformation model in mouse lungs and bronchial epithelial cell lines is constructed, and differences in the expression of non-coding circRNAs are analyzed. The migratory and invasive abilities of Cd-transformed cells are suppressed by circCIMT. A significant DNA damage response is observed after exposure to Cd, which increased further following circCIMT-interference. It is found that APEX1 is significantly down-regulated following Cd exposure. Furthermore, it is demonstrated that circCIMT bound to APEX1 during Cd exposure to mediate the DNA base excision repair (BER) pathway, thereby reducing DNA damage. In addition, simultaneous knockdown of both circCIMT and APEX1 promotes the expression of cancer-related genes and malignant transformation after long-term Cd exposure. Overall, these findings emphasis the importance of genetic-epigenetic interactions in chemical-induced cancer transformation.


Subject(s)
Cadmium , DNA Repair , Mice , Animals , Cadmium/toxicity , Cadmium/metabolism , DNA Repair/genetics , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/genetics , Lung/metabolism , Epithelial Cells/metabolism , DNA/metabolism
10.
New Phytol ; 238(1): 186-201, 2023 04.
Article in English | MEDLINE | ID: mdl-36564978

ABSTRACT

As the seed precursor, the ovule produces the female gametophyte (or embryo sac), and the subsequent double fertilization occurs in it. The integuments emerge sequentially from the integument primordia at the early stages of ovule development and finally enwrap the embryo sac gradually during gametogenesis, protecting and nursing the embryo sac. However, the mechanisms regulating integument development are still obscure. In this study, we show that SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES (SERKs) play essential roles during integument development in Arabidopsis thaliana. The serk1/2/3 triple mutant shows arrested integuments and abnormal embryo sacs, similar defects also found in the triple loss-of-function mutants of ERECTA family (ERf) genes. Ovules of serk1/2/3 er erl1/2 show defects similar to er erl1/2 and serk1/2/3. Results of yeast two-hybrid analyses, bimolecular fluorescence complementation (BiFC) analyses, and co-immunoprecipitation assays demonstrated that SERKs interact with ERf, which depends on EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family small peptides. The sextuple mutant epfl1/2/3/4/5/6 shows integument defects similar to both of er erl1/2 and serk1/2/3. Our results demonstrate that ERf-SERK-mediated EPFL signaling orchestrates the development of the female gametophyte and the surrounding sporophytic integuments.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Signal Transduction , Reproduction , Ovule/metabolism , Gene Expression Regulation, Plant
11.
Chinese Journal of School Health ; (12): 316-320, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-964454

ABSTRACT

Abstract@#In recent years, the incidence of adolescent suicide has been increasing, and it has become a serious public health problem that threatens the physical and mental health and even the life of adolescents. Adolescents with depressive disorder are a high risk group for suicidal behavior. The paper reviews the personal psychological factors, as well as the family, school and social factors that play a role in the suicidal behavior of adolescents with depressive disorder, providing a scientific basis for the effective prevention of suicidal behavior in adolescents.

12.
Harmful Algae ; 118: 102307, 2022 10.
Article in English | MEDLINE | ID: mdl-36195414

ABSTRACT

In dinoflagellates, sexual reproduction is best known to be induced by adverse environmental conditions and culminate in encystment for survival ('sex for encystment'). Although increasing laboratory observations indicate that sex can lead to production of vegetative cells bypassing encystment, the occurrence of this alternative pathway in natural populations and its ecological roles remain poorly understood. Here we report evidence that sex in dinoflagellates can potentially be an instrument for bloom proliferation or extension. By bloom metatranscriptome profiling, we documented elevated expression of meiosis genes in two evolutionarily distinct species (Prorocentrum shikokuense and Karenia mikimotoi) during bloom, a timing unexpected of the 'sex for encystment' scenario. To link these genes to meiosis, we induced encystment and cyst germination in the cyst-forming species Scrippsiella acuminata, and found that five of these genes were upregulated during cyst germination, when meiosis occurs. Integrating data from all three species revealed that SPO11, MND1, and DMC1 were likely common between cyst-forming and non-encysting sex in dinoflagellates. Furthermore, flow cytometric analyses revealed consecutive rounds of DNA halving during blooms of P. shikokuense and K. mikimotoi, evidencing meiosis. These data provided novel evidence that sexual reproduction in dinoflagellates might serve to promote cell proliferation, and along with the consequent enhancement of genetic diversity facilitating resistance against pathogens and environmental stress, to boost or extend a bloom ('sex for proliferation'). The putative meiosis-specific genes and insights reported here will prove to be helpful for rigorously testing the hypothesis and addressing whether the two modes of sex are genetically predisposed (i.e. species-specific) or environmentally induced (switchable within species), and if the latter what triggers the switch.


Subject(s)
Dinoflagellida , Cell Proliferation , Dinoflagellida/genetics , Meiosis
13.
Plant Cell ; 34(12): 4714-4737, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36130292

ABSTRACT

In Arabidopsis thaliana, the female gametophyte consists of two synergid cells, an egg cell, a diploid central cell, and three antipodal cells. CYTOKININ INDEPENDENT 1 (CKI1), a histidine kinase constitutively activating the cytokinin signaling pathway, specifies the central cell and restricts the egg cell. However, the mechanism regulating CKI1-dependent central cell specification is largely unknown. Here, we showed that the type-B ARABIDOPSIS RESPONSE REGULATORS10, 12, and 18 (ARR10/12/18) localize at the chalazal pole of the female gametophyte. Phenotypic analysis showed that the arr10 12 18 triple mutant is female sterile. We examined the expression patterns of embryo sac marker genes and found that the embryo sac of arr10 12 18 plants had lost central cell identity, a phenotype similar to that of the Arabidopsis cki1 mutant. Genetic analyses demonstrated that ARR10/12/18, CKI1, and ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN2, 3, and 5 (AHP2/3/5) function in a common pathway to regulate female gametophyte development. In addition, constitutively activated ARR10/12/18 in the cki1 embryo sac partially restored the fertility of cki1. Results of transcriptomic analysis supported the conclusion that ARR10/12/18 and CKI1 function together to regulate the identity of the central cell. Our results demonstrated that ARR10/12/18 function downstream of CKI1-AHP2/3/5 as core factors to determine cell fate of the female gametophyte.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Cytokinins/metabolism , Ovule/genetics , Ovule/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
14.
3 Biotech ; 12(9): 205, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35935544

ABSTRACT

Waterfowl parvovirus, duck enteritis virus and goose astrovirus have become serious pathogens in waterfowl farming. Co-infections occasionally occur, and as a result, it is much harder to rapidly and simultaneously identify several pathogens using conventional PCR. According to the characteristics of the goose parvovirus (GPV) and muscovy duck parvovirus (MDPV) genome sequences, a universal PCR primer was designed using Rep1 as the target gene. The specific detection primers were designed based on the specific conserved regions of UL54 of the duck enteritis virus (DEV) gene and ORF1a of the goose astrovirus (GAstV) gene. The PCR reaction system and conditions were optimized, and the optimal annealing temperature was found to be 56.2 â„ƒ. The volume ratio of the GPV-MDPV, GAstV and DEV primers (20 µM) was 1:4:5. The established multiplex PCR detection method can simultaneously detect GPV, MDPV, DEV and GAstV within one reaction, and be negative for duck Tembusu virus, muscovy duck reovirus, duck hepatitis A virus type 3 and duck circovirus. The method with excellent sensitivity, specificity and repeatability was successfully applied to clinical samples, it is a useful platform for identifing co-infections of GPV, MDPV, DEV and GAstV in waterfowl.

15.
Toxicol Sci ; 189(2): 203-215, 2022 09 24.
Article in English | MEDLINE | ID: mdl-35866630

ABSTRACT

Cigarette smoking-induced chronic inflammation has been considered a vital driver of lung tumorigenesis. The compounds 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific carcinogen, and lipopolysaccharide (LPS), an inflammatory inducer, are important components of tobacco smoke which have been implicated in inflammation-driven carcinogenesis. However, the biological effects and underlying mechanisms of LPS-mediated inflammation on NNK-induced tumorigenesis are still unclear. In this study, BEAS-2B human bronchial epithelial cells were exposed to NNK, LPS or both, for short- or long-term periods. We found that acute LPS exposure promoted the secretion of granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin (IL)-6 in NNK-treated BEAS-2B cells. In addition, chronic LPS exposure facilitated the NNK-induced malignant transformation process by promoting cell proliferation, cell cycle alteration, migration, and clonal formation. Previously, we determined that circular RNA circ_0035266 enhanced cellular inflammation in response to NNK + LPS by sponging miR-181d-5p and regulating expression of its downstream target DEAD-Box Helicase 3 X-Linked (DDX3X). Here, we found that knockdown of circ_0035266 or DDX3X led to a remarkable inhibition of the proliferation, cell cycle progression, and migration of NNK + LPS-transformed BEAS-2B cells, whereas overexpression of these genes produced the opposite effects, indicating the oncogenic roles of circ_0035266 and DDX3X in the malignant progression of chronic inflammation-driven malignant transformed cells. Moreover, the regulatory relationships among circ_0035266, miR-181d-5p, and DDX3X were further confirmed using a group of lung cancer tissues. Conclusively, our findings provide novel insights into our understanding of inflammation-driven tumorigenesis using a cellular malignant transformation model, and indicate a novel tumor-promoting role for circ_0035266 in chemical carcinogenesis.


Subject(s)
MicroRNAs , Nitrosamines , Tobacco Smoke Pollution , Carcinogenesis/chemically induced , Carcinogenesis/genetics , Carcinogens/toxicity , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/genetics , DEAD-box RNA Helicases/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Inflammation/chemically induced , Inflammation/genetics , Interleukins/metabolism , Lipopolysaccharides/toxicity , Macrophage Colony-Stimulating Factor/metabolism , MicroRNAs/genetics , Nitrosamines/toxicity , RNA, Circular , Up-Regulation
16.
Int J Biol Markers ; 37(3): 270-279, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35775111

ABSTRACT

BACKGROUND: Peripheral neutrophil-lymphocyte ratio (NLR), reflecting immune-inflammation status, shows great potential for tumor progression and outcome. Pre-treatment NLR does not fully reflect the immune-inflammatory response to treatment. This study aimed to introduce the NLR trend as a new indicator and to investigate its prognostic value in patients with nasopharyngeal carcinoma receiving radiotherapy. METHODS: This retrospective study evaluated patients with nasopharyngeal carcinoma treated with radiotherapy. The NLR trend value was calculated from the fitted line gradient via the NLRs before, during (at least once), and after each patient's first radiotherapy. The Kaplan-Meier curve and log-rank test were used to calculate and compare survival outcomes of different pretreatment NLRs and NLR trends for progression-free survival, locoregional recurrence-free survival (LRFS), and overall survival at 3 and 5 years. Multivariate Cox regression analyses were performed to assess the association between the NLR trend plus 3- and 5-year overall survival. RESULTS: The study included 528 patients. A lower NLR trend predicted worse progression-free survival, LRFS, plus 3- and 5-year overall survival. Multivariate Cox regression analysis showed that the NLR trend independently predicted 3- and 5-year overall survival. Sub-group analysis showed that the prognosis of patients with a low pretreatment NLR and a high NLR trend were superior to those of other groups. CONCLUSION: The NLR trend independently predicted the prognosis of patients with nasopharyngeal carcinoma receiving radiotherapy. The NLR trend and the pretreatment NLR combination is more precise than pretreatment NLR in predicting prognosis. A high NLR trend may be evidence of a positive immune response to radiotherapy in patients with nasopharyngeal carcinoma.


Subject(s)
Nasopharyngeal Neoplasms , Neutrophils , Disease-Free Survival , Humans , Lymphocytes/pathology , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Neoplasms/pathology , Neutrophils/pathology , Prognosis , Retrospective Studies
17.
Chemosphere ; 303(Pt 2): 135005, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35605724

ABSTRACT

Exposure to high concentrations of copper is associated with pulmonary inflammation and chronic respiratory disease (CRD). Epigenetic modulation of noncoding RNAs contributes to the development of several CRDs. It is unknown whether epigenetic modulation is involved in copper mediated pulmonary inflammation and CRD. We conducted a case-control study of 101 CRD cases and 161 control subjects in Shijiazhuang, China, and evaluated circRNAs and cytokine levels (IL-6 and IL-8) by qPCR and ELISA. Urinary copper concentration was determined by inductively coupled plasma mass spectrometry. Linear mixed models and generalized linear mixed models were used to assess the associations of circRNAs with CRD, urinary copper, and cytokines. We exposed the human bronchial epithelial cell line, 16HBE, to copper and assessed the functional role of a circRNA, circ_0008882, by RNA overexpression. Cellular location of circ_0008882 was assessed by separation of nuclear and cytoplasmic RNAs. Nine circRNAs were associated with an increased risk for CRDs, while the relative expression of circ_0008882 was decreased after copper exposure in vitro and in vivo. Copper exposure stimulated 16HBE cells to release proinflammatory IL-6 and IL-8. The release of the cytokines was inhibited by overexpression of circ_0008882. These results suggest a role for circ_0008882 in the regulation of CRD associated inflammation following copper exposure.


Subject(s)
MicroRNAs , Pneumonia , Respiration Disorders , Case-Control Studies , Chronic Disease , Copper/toxicity , Cytokines , Humans , Interleukin-6/metabolism , Interleukin-8 , MicroRNAs/genetics , RNA/genetics , RNA, Circular/genetics , Respiration Disorders/chemically induced
18.
Arch Toxicol ; 96(7): 2049-2065, 2022 07.
Article in English | MEDLINE | ID: mdl-35435490

ABSTRACT

Environmental chemical exposure often causes DNA damage, which leads to cellular dysfunction and the development of diseases. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific carcinogen that is known to cause DNA damage, while remains unknown about the underlying mechanism. In this study, simulated doses of NNK exposure in smokers, ranging from 50 to 300 µM, were used to detect the DNA damage effects of NNK in two human bronchial epithelial cells, 16HBE and BEAS-2B. The comet assay revealed increased DNA damage in response to NNK treatment, as measured by increased Olive tail moment (OTM). NNK treatment also led to elevated foci formation and protein expression of γ-H2AX, a DNA damage sensor. Dysregulation of proliferation, cell cycle arrest and apoptosis, was also observed in NNK-treated cells. Furthermore, the most effective dose of NNK (300 µM) was used in subsequent mechanistic studies. A circular RNA circNIPBL was identified to be significantly up-regulated in NNK-treated cells, circNIPBL knockdown successfully alleviated NNK-induced DNA damage and reversed the cellular dysregulation, while circNIPBL overexpression had the opposite effect. Mechanistically, we identified an interaction between circNIPBL and PARP1, a critical enzyme of the base excision repair (BER) pathway. CircNIPBL silencing successfully alleviated the NNK-induced inhibition of BER pathway proteins, including PARP1, XRCC1, PCNA and FEN1, while overexpression of circNIPBL had the opposite effect. In summary, our study shows for the first time that circNIPBL promotes NNK-induced DNA damage and cellular dysfunction through the BER pathway. In addition, our findings reveal the crucial role of epigenetic regulation in carcinogen-induced genetic lesions and further our understanding of environmental carcinogenesis.


Subject(s)
Nitrosamines , Carcinogens/metabolism , Carcinogens/toxicity , DNA Damage , DNA Repair , Epigenesis, Genetic , Epithelial Cells , Humans , Nitrosamines/toxicity , RNA, Circular , X-ray Repair Cross Complementing Protein 1/metabolism
19.
BMC Anesthesiol ; 22(1): 61, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35246030

ABSTRACT

BACKGROUND: Elderly patients undergoing colonoscopy with propofol as sedation are prone to respiratory or cardiovascular complications. Intravenous lidocaine has analgesic efficacy and reduces propofol consumption during surgery. Here, the effect of intravenous lidocaine on propofol consumption was evaluated in elderly patients undergoing colonoscopy. METHODS: Patients were randomly allocated to receive intravenous lidocaine (1.5 mg/kg bolus dose, followed by a 2 mg/kg/h continuous infusion during the procedure; Group L) or a placebo (saline; Group N). During the procedure, sedation was achieved by propofol. The following outcomes were recorded: total propofol consumption; time to loss of consciousness; number of airway modifications; time to the first airway intervention; incidence of sedation-related events; pain score after awakening; endoscopists' and patients' satisfaction scores; memory level of the procedure; and adverse events within 24 h postoperatively. RESULTS: Compared with Group N, propofol consumption was reduced by 13.2% in Group L (100.30 ± 25.29 mg vs. 115.58 ± 27.52 mg, respectively, p = 0.008). Kaplan-Meier curves showed that the median time to the loss of consciousness episode was shorter in Group L than in Group N (40 s vs. 55 s, respectively, log rank p < 0.0001). The number of airway modifications, time to the first airway intervention, incidence of sedation-related events, time to awakening, pain score after awakening, endoscopists' and patients' satisfaction scores, memory level of the procedure and adverse events within 24 h postoperatively did not differ between the two groups (p > 0.05). CONCLUSIONS: Intravenous lidocaine can reduce propofol consumption in elderly patients undergoing colonoscopy, with quicker time to loss of consciousness. TRIAL REGISTRATION: The clinical trial was registered at (12/01/2021, ChiCTR2100042001 ).


Subject(s)
Propofol , Aged , Anesthetics, Intravenous , Colonoscopy/methods , Double-Blind Method , Humans , Lidocaine , Pain/chemically induced , Unconsciousness
20.
Plant Physiol ; 189(1): 165-177, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35134233

ABSTRACT

ROOT MERISTEM GROWTH FACTORs (RGFs), a group of peptide hormones, play key roles in root apical meristem development. In Arabidopsis (Arabidopsis thaliana), there are 11 members of RGFs, in which at least RGF1, RGF2, and RGF3 are expressed at the root tip and are involved in root stem cell niche maintenance. RGFs are perceived by five functionally redundant receptor-like protein kinases, RGF1 INSENSITIVE 1 (RGI1) to RGI5, to maintain the expression of two downstream APETALA 2 (AP2) transcription factor genes, PLETHORA 1 (PLT1) and PLT2, and to stabilize PLT2. RGI1 to RGI3 were also named RGF RECEPTOR 1 (RGFR1) to RGFR3, respectively. Although previous studies have suggested that BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) and its paralogs, SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASEs (SERKs), may act as coreceptors of RGIs, comprehensive genetic and biochemical analyses have not been well documented. Here, we report that single, double, and triple mutants of SERKs show various degrees of short root phenotypes and insensitivity to exogenously applied RGF1. The interaction between RGIs and BAK1 and their mutual phosphorylation are RGF1 dependent. We also found that RGF1-induced MAPK activation relies on both RGIs and SERKs. We demonstrate that RGIs play redundant roles in regulating root apical meristem development. Therefore, we genetically and biochemically substantiated that SERKs, as coreceptors, play essential roles in the RGF1-mediated signaling pathway.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Meristem/metabolism , Plant Roots/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...